Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

9701/36

CHEMISTRY

Paper 3 Advanced Practical Skills 2
October/November 2019
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 13 printed pages and $\mathbf{3}$ blank pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Limewater is a saturated solution of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, in water. In this experiment you will determine the concentration of limewater by titration with hydrochloric acid.

FB 1 is limewater.
FB 2 is $0.500 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
bromophenol blue indicator
(a) Method

Dilution of FB 2

- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 2 into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Make the solution up to the mark using distilled water.
- Shake the solution in the volumetric flask thoroughly.
- This solution of hydrochloric acid is FB 3. Label the volumetric flask FB 3.
- Rinse the pipette thoroughly.

Titration

- Fill the burette with FB 3.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 1 into a conical flask.
- Add a few drops of bromophenol blue.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.

I	
II	
III	
IV	
V	
VI	
VII	

- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FB 3 added in each accurate titration.
(b) From your accurate titration results, obtain a suitable value for the volume of FB 3 to be used in your calculations.
Show clearly how you obtained this value.
(c) Calculations
(i) Give your answers to (ii), (iii), (iv) and (v) to the appropriate number of significant figures.
(ii) Calculate the number of moles of hydrochloric acid, HCl , in the volume of FB 3 calculated in (b).
moles of $\mathrm{HCl}=$
mol
(iii) Give the equation for the reaction of calcium hydroxide with hydrochloric acid.

Deduce the number of moles of calcium hydroxide that reacted with the hydrochloric acid in (c)(ii).
moles of $\mathrm{Ca}(\mathrm{OH})_{2}=$ \qquad mol
(iv) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of calcium hydroxide in FB 1.
concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ in $\mathrm{FB} 1=$ \qquad moldm^{-3}
(v) Calculate the mass of calcium hydroxide dissolved in $1.00 \mathrm{dm}^{3}$ of limewater, FB 1.

2 In this experiment you will determine the enthalpy change, ΔH, for the decomposition of calcium hydroxide.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

To do this, you will determine the enthalpy changes for the reactions of calcium hydroxide and calcium oxide with hydrochloric acid. Excess acid will be used for both experiments.

Then you will use Hess' Law to calculate the enthalpy change for the reaction.
FB 4 is calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$.
FB 5 is calcium oxide, CaO .
FB 6 is $2.50 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
(a) Determination of the enthalpy change for the reaction of calcium hydroxide, FB 4, with hydrochloric acid, FB 6

(i) Method

- Support a plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $40 \mathrm{~cm}^{3}$ of FB 6 into the plastic cup.
- Measure and record the temperature of FB 6.
- Weigh the container with FB 4. Record the mass.
- Add all FB 4 from the container to FB 6 in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh and record the mass of the container with any residual solid.
- Calculate and record the mass of FB 4 used.
- Calculate and record the temperature rise.

Keep FB 6 for use in Question 3.

Results

(ii) Calculations

Calculate the energy produced during this reaction.
(Assume that 4.2 J of heat energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)
energy produced =
(iii) Calculate the number of moles of calcium hydroxide, FB 4, used in the experiment.
moles of $\mathrm{Ca}(\mathrm{OH})_{2}=$ \qquad mol [1]
(iv) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction in which 1.00 mol of solid calcium hydroxide is neutralised by aqueous hydrochloric acid.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ sign value
(b) Determination of the enthalpy change for the reaction of calcium oxide, FB 5, with hydrochloric acid, FB 6

(i) Method

- Support the second plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $40 \mathrm{~cm}^{3}$ of FB 6 into the plastic cup.
- Measure and record the temperature of FB 6.
- Weigh the container with FB 5. Record the mass.
- Add all FB 5 from the container to FB 6 in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh and record the mass of the container with any residual solid.
- Calculate and record the mass of FB 5 used.
- Calculate and record the temperature rise.

Results

(ii) Calculation

Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction below.

$$
\mathrm{CaO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

\qquad
(c) Use your values for the enthalpy changes calculated in (a)(iv) and (b)(ii) to calculate the enthalpy change for the decomposition of calcium hydroxide.

Show clearly how you obtained your answer.
(If you were unable to calculate the enthalpy changes, assume that the magnitude of the enthalpy change in (a)(iv) is $164 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the magnitude in (b)(ii) is $191 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Note: these may not be the correct magnitudes and the signs have been deliberately omitted.)

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\begin{array}{cc}
\text { enthalpy change }=\underset{\text { sign }}{\ldots} . ~ & \mathrm{~mol}^{-1} \\
\text { value }
\end{array}
$$

(d) (i) The experiment in (b) was repeated, using the same mass of calcium oxide, FB 5. However, $40 \mathrm{~cm}^{3}$ of $3.0 \mathrm{moldm}^{-3} \mathrm{HCl}$ was used instead of $40 \mathrm{~cm}^{3}$ of $2.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.

How would the temperature rise compare with the one you obtained in (b)(i)? Explain your answer.
\qquad
\qquad
\qquad
(ii) A student suggested that the experiment in (a) would be more accurate if a taller plastic cup of the same diameter was used.

Do you agree with the student? Explain your answer.
\qquad
\qquad

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 7 is a solid containing one of the anions listed in the Qualitative Analysis Notes. Place a small spatula measure of FB 7 in a hard-glass test-tube. Heat it gently at first and then more strongly. Identify the gas produced. Leave the contents of the tube to cool.

Record all your observations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) FB 8 and FB 9 are both solutions of potassium compounds.

Each contains one anion which is listed in the Qualitative Analysis Notes.
(i) Carry out the following tests and record your observations.

test	observations with FB 8	observations with FB 9
To a 1 cm depth in a test-tube, add a few drops of aqueous acidified potassium manganate(VII).		
To a 1 cm depth in a test-tube, add an equal volume of dilute nitric acid followed by a few drops of aqueous barium nitrate, then		
add a few drops of aqueous silver nitrate.		
To a 1 cm depth in a boiling tube, add an equal volume of aqueous sodium hydroxide and warm carefully, then		
add a strip of aluminium foil.		

(ii) Give the ionic equation for the reaction of silver nitrate with FB 8. Include state symbols.
\qquad
(iii) The reaction of aluminium with FB 9 involves a redox reaction.

What species are oxidised and reduced in this reaction?
species oxidised \qquad
species reduced \qquad
(c) (i) In a test-tube, mix together 1 cm depths of FB 8 and FB 9. Record your observation. observation \qquad
Then add one drop of FB 6, hydrochloric acid, and record your observation.
observation
(ii) From your knowledge of FB 8, suggest the formula of the chemical you observed at the end of the experiment in (c)(i).
formula
(iii) How would you test to confirm that the identification you made in (c)(ii) is correct? Name the reagent you would use.
Carry out your test and record your observation.
reagent used \qquad
observation \qquad
[Total: 13]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO_{3}^{2-}	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-(a q)}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	을
	Oi ${ }^{\circ}$
	8 ¢ ¢
	®
	n ¢
	ま
Ge	
	® U

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

